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� The C released quickly during thawing in the peat and permafrost soils.
� The CO2 emission was higher during thawing in the sphagnum moss layer.
� The CH4 emissions showed different trend to the CO2 emissions during thawing.
� The Q10 values of peat and permafrost soil were increased across the freezing point of water.
� The changes of soil substrates and environments during thawing could affect the type of greenhouse gas.
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a b s t r a c t

Soil thawingmay affect the turnover of soil organic carbon (C) and the release of C to the atmosphere. Little
is known about C release during thawing in the Great Hing’anMountains, China. Through the incubations,
we studied the emissions of CO2 and CH4 during thawing from the Sphagnummoss layer to the permafrost
layer under aerobic and anaerobic conditions. Carbonwas released quickly during thawing under different
conditions. The Sphagnum moss layer produced more CO2 than the other layers. However, there was little
CH4 release during thawing in the Sphagnum moss layer and burst of CH4 emissions in the peat and
permafrost soils. These bursts include stored CH4 in the frozen samples and productions from microbial
activity. The temperature sensitivity during thawing decreased across the freezing point in the Sphagnum
moss layer, did not change greatly in the root layer, and increased greatly in the peat and permafrost layers.
Changes in soil substrates and enzyme activities may affect C release during thawing.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Boreal peatland ecosystems cover about 3% of the earth’s surface
and store approximately one-third of the total terrestrial C pool
(Gorham, 1991; Tarnocai et al., 2009). Peat is partially decomposed
plant material that accumulates where plant production exceeds
organic matter losses through heterotrophic respiration, leaching
or dissolved export, fire combustion or other disturbance-related
losses and it represents the balance between CO2 fixation by net
primary production and carbon releases throughout the entire peat
column (Turetsky, 2004). Sphagnum mosses are usually dominant
fax: þ86 431 85542298.
981@sohu.com, sunli7912@
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in the peatland ecosystems and decompose very slowly (Dorrepaal
et al., 2005; Wieder and Vitt, 2006). Sphagnum mosses and peat
soils provide good thermal for the underlying permafrost and
contribute to permafrost stability (Turetsky, 2004; Wieder and Vitt,
2006). However, climatemodels predict that climate changewill be
most intense at high latitudes (IPCC, 2007). Increased air and soil
temperatures could contribute to permafrost thawing in the high
latitude ecosystems and expose a large pool of stable C stored in
permafrost to microbial decomposition (Davidson and Janssens,
2006; Schuur et al., 2008).

Increases in CO2 and CH4 emissions following soil thawing have
been shown to affect total annual gas budgets (Papen andButterbach-
Bahl,1999; Song et al., 2006). Microbial activity essentially stops once
the soil is frozen (Schaefer et al., 2011). During thawing, the sudden
flush ofwater and nutrientsmay induce changes inmicrobial activity,
with organisms shifting rapidly (Schimel andClein,1996). The general
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mechanisms that explain the increased C emission after thawing in-
clude release of C frommicrobial biomass, death of roots, and changes
in soil structure (Matzner and Borken, 2008). However, the mecha-
nisms that control C releases during thawing events are not fully
understood (Kim et al., 2012). Future climate change is likely to alter
the thawing events. Soil thawing raises the questions about the fate of
C cycling in peatland ecosystems.

Peatland environments are generally highly heterogenous, which
creates large uncertainties in understanding the resulting effects of
dynamic processes such as permafrost thawing (Bäckstrand et al.,
2010). Permafrost thawing could also affect the soil moisture and
result in different soil environments (Wickland et al., 2006). The
organic carbon in the permafrost might be relatively labile since it is
not protected from decomposition by physical protection or humifi-
cation mechanisms (Fan et al., 2008). There are still knowledge gap
regarding the extent to which permafrost-protected C is available for
microbial metabolism once soils thaw (Warldrop et al., 2010). Labo-
ratory studymay reflect the climate effects on permafrost soils under
aerobic and anaerobic conditions. The results should help parame-
terize and validate ecosystem and climate models of C release from
permafrost thawing (Lee et al., 2011).

In the Great Hing’anMountains in China, low temperatures, a short
growing season, partial water-saturation, and permafrost limit de-
composition of organicmatters resulting in an accumulation of organic
matter in soils (Wang et al., 2010). However, the permafrost boundary
has moved northward with a deeper active layer and the total
permafrost area has shrunk remarkably since the 1970s in this
montane area (Jin et al., 2007). Such changesmay influence the C cycle
in local permafrost peatlands. To improve our understanding of the
present and future C dynamics in permafrost peatland ecosystems, we
collected samples from the continuous permafrost peatlands in the
Great Hing’an Mountains, China. The objective of this study was to
quantify CH4 and CO2 release during thawing under aerobic and
anaerobic conditions and to compare the C emissions from the
Sphagnum moss layer with the permafrost layer during thawing. We
hypothesized that the stored CH4 in the frozen samples would affect
the calculation of the CH4 emission from the microbial production
during thawing and that permafrost soils could have high potential
decomposability after thawing compared with the active layer.

2. Materials and methods

2.1. Study area

The sampling sites (52�550e53�100N, 122�460e122�160E) were
near the town of Mohe County, which located in the continuous
permafrost zone of the Great Hing’an Mountains, northeastern
China. Permafrost in this region is an integral part of Eurasian
continuous permafrost. Themean annual air temperature is�5.5 �C
and the annual precipitation from 1961 to 2000 was 400 mm (Jin
et al., 2007). The peatland is poor fen in this region and distrib-
uted in the wide valleys, which dominated by Ledum palustre,
Vaccinium uliginosum, Sphagnum spp., and Larix gmelini Rupr. The
thickness of the active layer ranges from 50 to 70 cm above the
permafrost layer (Wang et al., 2010; Miao et al., 2012).
Table 1
Substrate quality of the samples used in the incubation study.

Depth (cm) TOC (g kg�1) TN (g kg�1) C/N ratio

0e10 431.70 � 40.71 10.80 � 0.04 36.68 � 3.96
10e20 488.63 � 28.16 19.03 � 0.04 24.50 � 0.81
20e30 407.97 � 4.31 17.11 � 0.07 22.70 � 1.78
40e50 234.57 � 6.62 9.24 � 0.03 23.25 � 2.65
80e90 126.23 � 1.80 5.55 � 0.01 19.49 � 0.62

Values are the means � 1 SE (n ¼ 3).
2.2. Soil sampling and preparation

We collected samples from Sphagnum hummock in December
2010 while the soils were totally frozen. The samples included the
Sphagnum spp., shrub root, peat, and permafrost soil, which were
wrapped inaluminumfoilwith10cmusingaband. The0e10cmlayer
was the Sphagnummoss layer,which included frozen livingSphagnum
moss. The 10e20 cm layer was the root layer, which included the
shrub roots. The 20e30 and 40e50 cm layers were the peat layer,
which could thaw during the summer months. The 80e90 cm layer
was the permafrost soil layer, which had frozen over 2 years (Table 1).
Then the samples were split along their axis with saw for incubation
experiments. Some small pieces (approximately 10 g) of the different
layers were taken for analyzing the CH4 concentration in the frozen
samples. The other samples were taken to the Northeast Institute of
Geography and Agroecology, Chinese Academyof Sciences and stored
at�20 �C. In the laboratory, some samples of each layer were thawed
at 4 �C, and then dried for analysis of the soil properties.

CH4 concentrations in frozen samples were obtained by thawing
small frozen subsamples of material in saturated NaCl solution,
following the method described by Wagner et al. (2007) (Table 1).
We took about 10 g samples in glass jars and sealed them tightly
with black rubber stoppers in the field. There were also four blank
samples. Then the thawed samples were shaken by hand and CH4
concentrations were analyzed by gas chromatography (Agilent
7890, Agilent Co., Santa Clara, CA, USA).

2.3. Incubation experiment

In the laboratory, about 40e50 g of frozen samples were placed
in 500 ml glass vials and sealed with rubber stoppers. Three vials
were incubated under aerobic conditions and three vials were
incubated under anaerobic conditions. All vials were incubated in
the dark. Anaerobic incubations were conducted by flushing with
N2, for 15e20 min at a time to ensure that O2 was removed. At each
measured time, the samples were also flushed with N2 for 15e
20 min to remove the cumulative gases. During the 48-
day incubation, we measured the concentrations of CO2 and CH4
emissions from �10 �C to 10 �C. The C emission rates were
measured when the soils were at �10 �C (on day 3), and after the
soils had been warmed to 0 �C (on day 3). The soils were then
incubated at 10 �C for the rest of the incubation period.

At each measurement time, 20 ml of headspace was collected
and the CO2 and CH4 concentration measured by gas chromatog-
raphy (Agilent 7890). Once the sampling of a vial was completed,
vials under aerobic conditions were flushed with ambient air and
resealed for the next measurement.

2.4. Soil characteristics techniques

Soil moisture content was determined gravimetrically by drying
the soil at 105 �C for 48 h andmeasuring the weight changes before
and after drying. The C contents were measured with a Multi N/C
2100 Analyzer (containing an HT 1500 Solid Module, Analytik Jena,
Germany). Total N concentration was analyzed by the Kjeldahl
pH Water content (%) CH4 content (mmol g�1)

5.57 � 0.24 1575.00 � 275.00 6.40 � 1.67
5.30 � 0.33 992.05 � 17.05 19.32 � 4.34
5.38 � 0.40 407.97 � 4.31 29.69 � 2.65
5.52 � 0.20 246.68 � 5.17 661.73 � 68.14
5.74 � 0.51 103.07 � 1.01 236.41 � 6.00
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Fig. 1. CO2 emission rates under aerobic and anaerobic conditions during a 48-day incu-
bation (AE: aerobic condition; AN: anaerobic condition). Values are means� 1 SE (n ¼ 3).
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Fig. 2. CH4 emission rates under aerobic and anaerobic conditions during a 48-day
incubation (AE: aerobic condition; AN: anaerobic condition). Values are means � 1
SE (n ¼ 3).
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digestion method using a Behr S5 analyzer (Behr LaboreTechnic
Gmbh, Düsseldorf, Germany). Sample pH was measured using
oven-dried (60 �C) soil samples. The samples were diluted 1:5 using
deionized water and stabilized, and the pH measurements taken
using an Orion pH meter (PHS-25, Shanghai, China).

After incubation, soil dissolved organic carbon (DOC) was
determined by the method of Jones and Willett (2006). About 10 g
samples were extracted with 50 ml of distilled water for 30 min on
a shaker at approximately 230 rpm and centrifuged for 20 min at
8000 rpm. The supernatant was filtered through a 0.45 mm filter
into separate vials for C analysis. The extracts were measured by
using the Multi N/C 2100 Analyzer. Soil microbial biomass carbon
(MBC) was determined by chloroform fumigation (Vance et al.,
1987) on all soils at all treatment temperatures after the 48-
day incubation. After the incubation experiment, the soil was
carefully mixed and DOC from 10 g soil was extracted with 0.05 M
K2SO4 in a 1:4 ratio. Another 10 g of soil was firstly fumigated with
chloroform for 24 h and then extracted in the same way. The ex-
tracts were frozen until analyses for total C concentrations on the
Multi N/C 2100 Analyzer.

Enzyme activity potentials were assayed on all samples after the
aerobic and anaerobic incubations. The enzymes assayed were
amylase, invertase, and cellulose, which were determined by the
modified methods described by Guan (1986) and Rahmansyah and
Sudiana (2010). Assays were conducted on 0.5 g samples with
acetateephosphate buffer (pH 5.5). The substrates were carboxy-
methylated cellulose for cellulase, starch solution for amylase,
and sucrose for invertase. The cellulose activity was incubated for
72 h, while the amylase and invertase activity were incubated for
24 h. Enzyme activity was measured colorimetrically at 508 nm (U-
2800, Japan) and expressed as mg glucose g soil�1 d�1.

2.5. Statistical analyses

Q10 values were calculated to reflect the potential decompos-
ability of soil organic carbon during thawing, which were calcu-
lated as the CO2 emission rates at�10 �C divided by the rates at 0 �C
and the rates at 0 �C divided by the rates at 10 �C. Cumulative gas
production was calculated for all samples. We used analysis of
variance (ANOVA) to test differences in the physiochemical vari-
ables of samples between the different layers. Statistical analyses
were performed using the OriginPro 8.0 software package.

3. Results

3.1. Carbon emissions during thawing

At�10 �C, the rates of CO2 emissions were very low for all frozen
samples under aerobic and anaerobic conditions (Fig. 1). For sam-
ples thawed at 0 �C and 10 �C, these rates increased greatly and the
amounts of CO2 emissions were higher under aerobic conditions
than those under anaerobic conditions. The rates in the 0e10 cm
layer were higher than those in the other layers in the thawed
samples.

The rates of CH4 emissions showed different trend to the rates of
CO2 emissions for the different layers. The rates of CH4 emissions in
the Sphagnum moss layer were very lower under both aerobic and
anaerobic conditions, even below 0 under aerobic conditions dur-
ing the incubation period. On the first day of thawing in the incu-
bation conducted at 10 �C, CH4 emission rates showed sharp peaks
under aerobic and anaerobic conditions in the root and soil layers
(Fig. 2). However, the rates of CH4 emissions were very low under
aerobic conditions for the rest of the incubation period. The average
percentages of the first day CH4 emissions in the root and soil layers
were about 40% under aerobic conditions and about 25% under
anaerobic conditions. The stored CH4 could be released during
thawing and influence the estimation of CH4 emissions by micro-
bial production. However, these percentages in the Sphagnummoss
layer were only 16.7% under aerobic conditions layer and 2.3%
under anaerobic conditions.

3.2. Temperature sensitivity of organic carbon decomposition

Q10 values were calculated by using the ratio of average CO2
emission rates for 3 days (Table 2). Calculated Q10 values in the
Sphagnummoss layerwere higher at�10 �C to 0 �C than those at 0e
10 �C under aerobic and anaerobic conditions. The Q10 values
increased during thawing across the freezing point in peat layers
under aerobic and anaerobic conditions. In the permafrost soil
layer, the Q10 values were much higher at 0e10 �C under aerobic
conditions. During thawing of permafrost, the permafrost soils
could have a higher potential for decomposition under aerobic
conditions compared with the active layer.

The temperature sensitivity in the Sphagnummoss layer showed
a decreasing trend during thawing across the freezing point under
aerobic and anaerobic conditions. The Q10 values in the root layer
increased across the freezing point under aerobic conditions, but



Table 2
Calculated Q10 values of CO2 emissions under aerobic and anaerobic conditions.

Depth
(cm)

Q10 values under
aerobic conditions

Q10 values under
anaerobic conditions

�10 �C to 0 �C 0e10 �C �10 �C to 0 �C 0e10 �C

0e10 6.86 � 0.78 4.19 � 0.20 5.41 � 0.48 3.24 � 0.06
10e20 5.18 � 0.24 5.71 � 0.30 3.75 � 0.22 3.48 � 0.29
20e30 2.27 � 0.22 4.93 � 0.34 1.60 � 0.16 3.83 � 0.26
40e50 1.96 � 0.13 5.15 � 0.69 1.56 � 0.08 2.89 � 0.19
80e90 1.93 � 0.43 29.21 � 1.62 1.18 � 0.11 5.24 � 0.41

Values are means � 1 SE (n ¼ 3).
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did not change greatly under anaerobic conditions. In the peat
layer, the Q10 values increased across the freezing point under
aerobic conditions more than under anaerobic conditions. The
values were increased greatly in the permafrost layer under aerobic
conditions. When peat and permafrost thaw, the decomposition of
organic carbon could be more sensitive in the aerobic environment.

3.3. Soil characteristics after thawing

DOC concentrations decreased with depth under aerobic and
anaerobic conditions (Fig. 3a). In the Sphagnummoss and root layers,
the DOC concentrations were higher under anaerobic than under
aerobic conditions. However, these concentrations did not change
greatly in the peat and permafrost layer under different conditions.
TheMBC concentrations were higher in the Sphagnummoss and root
layers than in the peat and permafrost layers (Fig. 3b). These con-
centrations in the Sphagnummoss and root layers were higher under
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Fig. 3. Soil dissolved organic carbon (DOC) (a) and soil microbial biomass carbon
(MBC) concentrations (b) of the samples (AE: aerobic condition; AN: anaerobic con-
dition). Values are means � 1 SE (n ¼ 3).
aerobic conditions than those under anaerobic conditions. However,
the MBC concentrations did not change greatly in the peat and
permafrost layers under the different conditions.

Enzyme activity potentials showed a decreasing trend with depth
under the different conditions (Fig. 4). Enzyme activities in the
Sphagnum moss and root layers were higher under aerobic condi-
tions. Amylase activities in the peat and permafrost layers were also
higher under aerobic conditions, but the invertase activities in the
peat layer were lower. The cellulose activities did not change greatly
in the peat and permafrost layers under different conditions.
4. Discussion

4.1. CO2 emissions during thawing

During thawing, trapped organic C may becomemore accessible
for microbial degradation (Osterkamp, 2007) and previously frozen
organic carbon may be released to the atmosphere (Mastepanov
et al., 2008). Increased CO2 emissions after thawing have been
observed in marsh (Song et al., 2006), bog (Panikov and Dedysh,
2000), taiga and tundra (Schimel and Clein, 1996). The Sphagnum
moss layer released more C than the other layers in our study. The
rate of CO2 release from Sphagnum litter from the 2.5e5 cm depth
layer was nearly twice as high as that from organic material from
the 10e12.5 cm depth layer under aerobic conditions in Sweden
(Hogg, 1993). The high CO2 emissions in the Sphagnum moss layer
suggest the presence of more fresh carbon substrates in this layer
than in the other sampled layers.

Although there are many studies, the mechanisms and impacts
of thawing on C emissions are still unclear (Henry, 2007; Kim et al.,
0-10 cm 10-20 cm 20-30 cm 40-50 cm 80-90 cm

0

200

400

600

 AE  AN

Amylase

0-10 cm 10-20 cm 20-30 cm 40-50 cm 80-90 cm
0

150

300

450

E
nz

ym
e 

ac
ti

vi
ty

Cellulase

0-10 cm 10-20 cm 20-30 cm 40-50 cm 80-90 cm
0

200

400

600

800

Sample

Invertase
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2012). Changes in microbial biomass and populations, root turn-
over and soil structure might explain increased C emissions after
thawing (Matzner and Borken, 2008). The decomposition of
permafrost soils under different environmental conditions could
affect the type of greenhouse gas released (Lee et al., 2011). Under
aerobic conditions, permafrost thawing will result in increased
decomposition of soil organic matter and increase CO2 release to
the atmosphere (Wickland et al., 2006; Lee et al., 2011).

4.2. CH4 emissions during thawing

At the onset of the freezing process in the upper Sphagnummoss
layer in autumn, a frozen layer overlies unfrozen soil, and a tem-
perature gradient is established between the sub-zero air and the
unfrozen soil. There is still CH4 production when the active layer is
gradually freezing, so CH4 that had accumulated in deeper layers is
probably squeezed out through the frost action (Mastepanov et al.,
2008). This study showed that, during thawing, this stored CH4
could be released quickly. CH4 also can be stored in soils with
freezing and consequently released to the atmosphere during
thawing in tundra (Mastepanov et al., 2008). Thawing of previously
frozen peat and increases in the thickness of the active layer could
influence estimation of CH4 emissions during the growing season.
Miao et al. (2012) found CH4 emission rates in the permafrost
peatland were not controlled by the water table and strongly
controlled by the active layer depth in our study region.

The mechanisms of CH4 emissions during thawing are complex
because they involve the response of both methanogenesis and
methanotrophy to changes in availability of substrates, the soil
environment, particularly soil moisture, and the availability of elec-
tron donors and acceptors that determine the redox status (Kim et al.,
2012). In our study, there were more CH4 emissions in the peat and
permafrost soils under anaerobic conditions during thawing. The
estimated CH4 emissions in our study represented the potential C
release and a proportion of the CH4 may be consumed by meth-
anotrophs in the soil. About 90% of the CH4 produced in peat can be
consumed by methanotrophs in the soil (Whalen, 2005). CH4 emis-
sions in the Sphagnum moss layer were very low during thawing
under aerobic and anaerobic conditions in our study. Sphagnum
mosses may host a large community of methanotrophs and play a
role in controlling CH4 oxidation (Larmola et al., 2010).

4.3. Potential decomposition during thawing

The Q10 values decreased across the freezing point of water in
the Sphagnum moss layer, did not change greatly in the root layer,
and increased greatly in the peat and permafrost layers. The
different layers showed differences in potential decomposability.
The unique chemical structures of Sphagnum species could influ-
ence the C emissions during thawing. The peat and permafrost soils
had high potential decomposability during thawing in our study.
These Q10 values during thawing were higher than the values in
Sphagnum peat (3.1) (Dioumaeva et al., 2003). The permafrost C is
more intrinsically labile than C in surface soils and could have high
potential decomposability during thawing (Warldrop et al., 2010).

The Q10 values during thawing were different under aerobic and
anaerobic conditions and the permafrost soils have higher potential
decomposability under aerobic conditions. Carbon in permafrost
soils could be very labile in aerobic environments in Alaska and
Siberia (Lee et al., 2011). The chemical recalcitrance of organic
matter, microbial population size and oxygen availability could
influence the temperature sensitivity of decomposition after
thawing (Warldrop et al., 2010). The C emissions measured here
represented the potential C release during thawing. However, the
active layer depth of permafrost (about 75 cm) increased in 2011 in
our study area (Miao et al., 2012), compared with the depth in 2007
(about 60 cm) (Wang et al., 2010). With expected increases in C
emissions as permafrost thaws, the decomposition of peat and
permafrost soils around the freezing point has important effects on
C emissions in this permafrost peatland.

4.4. Substrate changes under different environments with thawing

Although frozen soils limit microbial activity and the diffusion of
substrates and products, there were still C emissions below 0 �C in
our study. There is still no evidence that the metabolism of mi-
crobes in frozen soils has a minimum temperature (Price and
Sowers, 2004). The availability of unfrozen water is believed to be
a key determinant control of microbial activity at sub-zero tem-
peratures (Price and Sowers, 2004; Öquist et al., 2009). The main
factor controlling soil respiration at �10 �C was the concentration
of DOC (Guicharnaud et al., 2010). The permafrost soil had high
potential decomposability after thawing and the DOC concentra-
tions were higher in permafrost soils than in the active layer
(Warldrop et al., 2010). Composition of microbial community and
microbial biomass affect the rate of soil organic C decomposition
(Nannipieri et al., 2003). Dörsch et al. (2004) found that the mi-
crobial biomass decreased after freezing and quickly recovered af-
ter thawing, which indicated the use of microbial necromass by the
surviving community. Herrmann and Witter (2002), using 14C
glucose labeling, showed that 65% of the CO2 flush after thawing
was due to decomposition of the microbial necromass.

The enzyme activities were different for all samples under aer-
obic and anaerobic conditions in our study. In general, higher soil
enzyme activities indicate faster breakdown of C bonds, and sup-
pressed enzyme activities result in lower rates of C release (Lee
et al., 2011). Anaerobic conditions in peatlands could prevent the
activity of the phenol oxidase enzyme and decrease C emissions
(Freeman et al., 2001). The enzyme activities are also influenced by
the SOC and express complex responses to stress conditions (Chaer
et al., 2009). Enzyme activities may exist in soils at �10 and �20 �C
(Bremner and Zantua, 1975) and be influenced by the freezeethaw
cycle (Chaer et al., 2009). However, there is still little research about
changes in enzyme activities following the freezeethaw cycle
(Yergeau and Kowalchuk, 2008).

5. Conclusions

The Great Hing’an Mountains are the southern edge of Eurasian
continuous permafrost and should be very sensitive to climate
warming. Through the incubation study, we observed quick release
of C during thawing under different conditions and the Sphagnum
moss layer produced more CO2 than the other sampled layers. CH4
emissions during thawing showed different trends to CO2 emis-
sions for the different layers. There were low CH4 emissions during
thawing of the Sphagnummoss layer. However, therewere bursts of
CH4 emissions during thawing under different conditions in the
peat and permafrost soils. These gases included stored CH4 in the
frozen samples and production from the microbial activity. After
thawing, the DOC, MBC, and enzyme activities were also different
for all samples under aerobic and anaerobic conditions. These fac-
tors could affect the C emissions during thawing.

The observed CO2 and CH4 emissions represent the potential C
release during thawing under aerobic and anaerobic conditions. The
temperature sensitivity during thawing decreased across the freezing
point in the Sphagnummoss layer, did not change greatly in the root
layer, and increased greatly in the peat and permafrost layers. The
thawing of frozen soils represents abrupt step changes in soil bio-
physical conditions, with critical implications for C release. Future
climate change is likely to alter thawing events and increase the
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permafrost degradation. Lab studies cannot reflect the natural C
release during thawing. Future research should focus on measure-
ments of gas fluxes in the field, microbiology and the microbial
response to thawing and adaptation to freezing temperatures.
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